KAHRISMA: a novel hypermorphic reconfigurable-instruction-set multi-grained-array architecture

  • Authors:
  • Ralf Koenig;Lars Bauer;Timo Stripf;Muhammad Shafique;Waheed Ahmed;Juergen Becker;Jörg Henkel

  • Affiliations:
  • Karlsruhe Institute of Technology, Karlsruhe, Germany;Karlsruhe Institute of Technology, Karlsruhe, Germany;Karlsruhe Institute of Technology, Karlsruhe, Germany;Karlsruhe Institute of Technology, Karlsruhe, Germany;Karlsruhe Institute of Technology, Karlsruhe, Germany;Karlsruhe Institute of Technology, Karlsruhe, Germany;Karlsruhe Institute of Technology, Karlsruhe, Germany

  • Venue:
  • Proceedings of the Conference on Design, Automation and Test in Europe
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

Facing the requirements of next generation applications, current approaches of embedded systems design will soon hit the limit where they may no longer perform efficiently. The unpredictable nature and diverse processing behavior of future applications requires to transgress the barrier of tailor-made, application-/domain-specific embedded system designs. As a consequence, next generation architectures for embedded systems have to react much more flexible to unforeseeable run-time scenarios. In this paper we present our innovative processor architecture concept KAHRISMA (KArlsruhe's Hypermorphic Reconfigurable-Instruction-Set Multi-grained-Array). It tightly integrates coarse- and fine-grained run-time reconfigurable fabrics that can incorporate to realize hardware acceleration for computationally complex algorithms. Furthermore, the fabrics can be combined to realize different Instruction Set Architectures that may execute in parallel. With the help of an encrypted H.264 en-/decoding case study we demonstrate that our novel KAHRISMA architecture will deliver the required flexibility to design future-proof embedded systems that are not limited to a certain computational domain.