A case for multi-channel memories in video recording

  • Authors:
  • Eero Aho;Jari Nikara;Petri A. Tuominen;Kimmo Kuusilinna

  • Affiliations:
  • Nokia Research Center, Tampere, Finland;Nokia Research Center, Tampere, Finland;Nokia Research Center, Tampere, Finland;Nokia Research Center, Tampere, Finland

  • Venue:
  • Proceedings of the Conference on Design, Automation and Test in Europe
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

In video recording, ever increasing demands on image resolution, frame rate, and quality necessitate a lot of memory bandwidth and energy. This paper presents and evaluates such a potential memory load in future handheld multimedia devices. Based on the achieved simulation results, the multi-channel memories provide the capability for high bandwidth without excessive overhead in terms of energy consumption. A full HDTV (1080p) quality video recording with H.264/AVC encoding at 30 frames per second (fps) is found here to require 4.3 GB/s memory bandwidth. According to the simulations, this memory requirement can be fulfilled with four 32-bit memory channels operating at 400 MHz and consuming 345 mW of power. As another example, 400 MHz 8-channel memory configuration is able to provide the required bandwidth for video recording with up to 3840x2160@30 fps. Die stacking is the technology thought to be able to provide the required bandwidth, sufficiently low power consumption, and the multi-channel memory organization.