Fine-grain dynamic instruction placement for L0 scratch-pad memory

  • Authors:
  • Jongsoo Park;James Balfour;William James Dally

  • Affiliations:
  • Stanford University, Stanford, CA, USA;NVIDIA Research, Santa Clara, CA, USA;Stanford University, Stanford, CA, USA

  • Venue:
  • CASES '10 Proceedings of the 2010 international conference on Compilers, architectures and synthesis for embedded systems
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

We present a fine-grain dynamic instruction placement algorithm for small L0 scratch-pad memories (SPMs), whose unit of transfer can be an individual instruction. Our algorithm captures a large fraction of instruction reuse missed by coarse-grain placement algorithms whose unit of transfer is restricted to loops or functions within the capacity of SPMs. Evaluation of L0 SPMs with our fine-grain algorithm in 17 applications shows that the energy consumed by instruction storage hierarchy is reduced by 38% and 31% compared to that of L0 instruction caches and L0 SPMs with an ideal coarse-grain algorithm, respectively.