Theory of optimal view interpolation with depth inaccuracy

  • Authors:
  • Keita Takahashi

  • Affiliations:
  • The University of Tokyo, IRT Research Initiative, Bunkyo-ku, Tokyo, Japan

  • Venue:
  • ECCV'10 Proceedings of the 11th European conference on Computer vision: Part IV
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

Depth inaccuracy greatly affects the quality of free-viewpoint image synthesis. A theoretical framework for a simplified view interpolation setup to quantitatively analyze the effect of depth inaccuracy and provide a principled optimization scheme based on the mean squared error metric is proposed. The theory clarifies that if the probabilistic distribution of disparity errors is available, optimal view interpolation that outperforms conventional linear interpolation can be achieved. It is also revealed that under specific conditions, the optimal interpolation converges to linear interpolation. Furthermore, appropriate band-limitation combined with linear interpolation is also discussed, leading to an easy algorithm that achieves near-optimal quality. Experimental results using real scenes are also presented to confirm this theory.