Efficient throughput-guarantees for latency-sensitive networks-on-chip

  • Authors:
  • Jonas Diemer;Rolf Ernst;Michael Kauschke

  • Affiliations:
  • Technische Universität, Braunschweig, Germany;Technische Universität, Braunschweig, Germany;Intel Germany

  • Venue:
  • Proceedings of the 2010 Asia and South Pacific Design Automation Conference
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

Networks-on-chip (NoC) for future multi- and many-core processor platforms face an increasing diversity of traffic requirements, ranging from streaming traffic with real-time requirements to bursty best-effort. The best-effort traffic usually results from applications running on general-purpose processors with caches and is very sensitive to latency. Hence, the NoC must provide guaranteed services to some traffic streams, while maintaining low latency and high throughput of best-effort traffic. In this paper, we propose a run-time configurable NoC that enables bandwidth guarantees with minimum impact on latency for best-effort traffic. This is achieved by prioritization and distributed traffic shaping of best-effort traffic. The analysis and evaluation of our quality-of-service scheme show that it can provide tight bandwidth guarantees for streaming traffic. At the same time, the average latencies of best-effort traffic improved by up to 47% compared to a standard prioritization scheme.