Genetic programming for shader simplification

  • Authors:
  • Pitchaya Sitthi-Amorn;Nicholas Modly;Westley Weimer;Jason Lawrence

  • Affiliations:
  • University of Virginia;University of Virginia;University of Virginia;University of Virginia

  • Venue:
  • Proceedings of the 2011 SIGGRAPH Asia Conference
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

We present a framework based on Genetic Programming (GP) for automatically simplifying procedural shaders. Our approach computes a series of increasingly simplified shaders that expose the inherent trade-off between speed and accuracy. Compared to existing automatic methods for pixel shader simplification [Olano et al. 2003; Pellacini 2005], our approach considers a wider space of code transformations and produces faster and more faithful results. We further demonstrate how our cost function can be rapidly evaluated using graphics hardware, which allows tens of thousands of shader variants to be considered during the optimization process. Our approach is also applicable to multi-pass shaders and perceptual-based error metrics.