Decentralized adaptive output-feedback control for a class of nonlinear large-scale systems with unknown time-varying delayed interactions

  • Authors:
  • Sung Jin Yoo;Jin Bae Park

  • Affiliations:
  • School of Electrical and Electronics Engineering, Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul 156-756, Republic of Korea;Department of Electrical and Electronic Engineering, Yonsei University, Seoul 120-749, Republic of Korea

  • Venue:
  • Information Sciences: an International Journal
  • Year:
  • 2012

Quantified Score

Hi-index 0.07

Visualization

Abstract

In this paper, the authors investigate a decentralized adaptive output-feedback controller design for large-scale nonlinear systems with input saturations and time-delayed interconnections unmatched in control inputs. The interaction terms with unknown time-varying delays are bounded by unknown nonlinear bounding functions including all states of subsystems. This point is a main contribution of this paper compared with previous output-feedback control approaches which assume that the time-delayed bounding functions only depend on measurable output variables. The bounding functions are compensated by using appropriate Lyapunov-Krasovskii functionals and the function approximation technique based on neural networks. The observer dynamic surface design technique is employed to design the proposed memoryless local controller for each subsystem. In addition, we prove that all signals in the closed-loop system are semiglobally uniformly bounded and control errors converge to an adjustable neighborhood of the origin. Finally, an example is provided to illustrate the effectiveness of the proposed control system.