Implementation of pulsed-latch and pulsed-register circuits to minimize clocking power

  • Authors:
  • Seungwhun Paik;Gi-Joon Nam;Youngsoo Shin

  • Affiliations:
  • KAIST, Daejeon, Korea;IBM Austin Research Laboratory, Austin, Texas;KAIST, Daejeon, Korea

  • Venue:
  • Proceedings of the International Conference on Computer-Aided Design
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

A pulsed-latch can be modeled as a fast flip-flop. This allows conventional flip-flop designs to be migrated to pulsed-latch versions by simple replacement to reduce the clocking power. A key step in the migration process is to insert pulsers, which generate clock pulse to drive local latches; the number of pulsers as well as the wirelength of clock routing must be minimized to reduce the clocking power. We formulate a pulser insertion problem to find a set of latch groups where each group shares a pulser and its load constraint is satisfied; both an ILP formulation and a heuristic algorithm are presented to solve the problem. Experimental results of circuits implemented with 32-nm CMOS technology show that the clocking power of pulsed-latch designs obtained by our approach is 5.9% less than that of greedy approach; this is 44.7% less than that of flip-flop designs. We also consider the problem of pulsed-register where a pulser is integrated with multiple latches. A concept of logical distance is explored during our clustering algorithm to minimize the overhead of signal wirelength when converting flip-flops to pulsed-registers. Compared with flip-flop circuits, signal wirelength is increased by 6.3%, which is 1.4% smaller than without considering logical distance, while reducing the clocking power by 24%.