Static noise margin analysis of sub-threshold SRAM cells in deep sub-micron technology

  • Authors:
  • Armin Wellig;Julien Zory

  • Affiliations:
  • STMicroelectronics Advanced System Technology, Geneva, Switzerland;STMicroelectronics Advanced System Technology, Geneva, Switzerland

  • Venue:
  • PATMOS'05 Proceedings of the 15th international conference on Integrated Circuit and System Design: power and Timing Modeling, Optimization and Simulation
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

Reducing leakage current in memories is critical for low-power designs in deep submicron technology. A common architectural technique consists of lowering the supply voltage to operate SRAM cells in sub-threshold (Vth). This paper investigates stability aspects of sub-Vth SRAM cells, both analytically and by simulation in STMicroelectronics' 90nm CMOS technology. For the first time analytical expressions for the Static Noise Margin in sub-Vth as a function of circuit parameters, operating conditions and process variations are derived. The 3G receiver case study illustrates the leakage saving potential of stable sub-Vth SRAM designs resulting into energy savings of up to 65%.