Fault emulation: A new methodology for fault grading

  • Authors:
  • Kwang-Ting Cheng;Shi-Yu Huang;Wei-Jin Dai

  • Affiliations:
  • Dept. of Electr. & Comput. Eng., California Univ., Santa Barbara, CA;-;-

  • Venue:
  • IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
  • Year:
  • 2006

Quantified Score

Hi-index 0.03

Visualization

Abstract

In this paper, we introduce a method that uses the field programmable gate array (FPGA)-based emulation system for fault grading. The real-time simulation capability of a hardware emulator could significantly improve the performance of fault grading, which is one of the most time consuming tasks in the circuit design and test process. We employ a serial fault emulation algorithm enhanced by two speed-up techniques. First, a set of independent faults can be injected and emulated at the same time. Second, multiple dependent faults can be simultaneously injected within a single FPGA-configuration by adding extra circuitry. Because the reconfiguration time of mapping the numerous faulty circuits into the FPGA's is pure overhead and could be the bottleneck of the entire process, using extra circuitry for injecting a large number of faults can reduce the number of FPGA-reconfigurations and, thus, improving the performance significantly. In addition, we address the issue of handling potentially detected faults in this hardware emulation environment by using the dual-railed logic. The performance estimation shows that this approach could be several orders of magnitude faster than the existing software approaches for large sequential designs