Three-dimensional place and route for FPGAs

  • Authors:
  • C. Ababei;H. Mogal;K. Bazargan

  • Affiliations:
  • Electr. & Comput. Eng. Dept., Univ. of Minnesota, Minneapolis, MN;-;-

  • Venue:
  • IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
  • Year:
  • 2006

Quantified Score

Hi-index 0.03

Visualization

Abstract

We present timing-driven partitioning and simulated-annealing (SA)-based placement algorithms together with a detailed routing tool for three-dimensional (3-D) field-programmable gate array (FPGA) integration. The circuit is first divided into layers with a limited number of interlayer vias, and then placed on individual layers, while minimizing the delay of critical paths. We use our tool as a platform to explore the potential benefits, in terms of delay and wire length (WL), that 3-D technologies can offer for FPGA fabrics. Experimental results show, on average, a total decrease of 25% in WL and 35% in delay can be achieved over traditional two-dimensional chips, when ten layers are used in 3-D integration