Thermal-aware logic block placement for 3D FPGAs considering lateral heat dissipation (abstract only)

  • Authors:
  • Juinn-Dar Huang;Ya-Shih Huang;Mi-Yu Hsu;Han-Yuan Chang

  • Affiliations:
  • National Chiao Tung University, Hsinchu, Taiwan Roc;National Chiao Tung University, Hsinchu, Taiwan Roc;National Chiao Tung University, Hsinchu, Taiwan Roc;National Chiao Tung University, Hsinchu, Taiwan Roc

  • Venue:
  • Proceedings of the ACM/SIGDA international symposium on Field Programmable Gate Arrays
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

Three-dimensional (3D) integration is an attractive and promising technology to keep Moore's Law alive, whereas the thermal issue also presents a critical challenge for 3D integrated circuits. Meanwhile, accurate thermal analysis is very time-consuming and thus can hardly be incorporated into most of placement algorithms generally performing numerous iterative refinement steps. As a consequence, in this paper, we first present a fine-grained grid-based thermal model for the 3D regular FPGA architecture and also highlight that lateral heat dissipation paths can no longer be assumed negligible. Then we propose two fast thermal-aware placement algorithms for 3D FPGAs, Standard Deviation (SD) and MineSweeper (MS), in which rapid thermal evaluation instead of slow detailed analysis is utilized. Moreover, both take the lateral heat dissipation into consideration and focus on distributing heat sources more evenly within a layer in a 3D FPGA to avoid creating hotspots. Experimental results show that SD and MS achieve 12.1%/7.6% reduction in maximum temperature and 82%/56% improvement in temperature deviation compared with a classical thermal-unaware placement method only at the cost of minor increase in wirelength and delay. Moreover, MS merely consumes 4% more runtime for producing thermal-aware placement solutions.