Temperature-aware microarchitecture: Modeling and implementation

  • Authors:
  • Kevin Skadron;Mircea R. Stan;Karthik Sankaranarayanan;Wei Huang;Sivakumar Velusamy;David Tarjan

  • Affiliations:
  • University of Virginia, Charlottesville, VA;University of Virginia, Charlottesville, VA;University of Virginia, Charlottesville, VA;University of Virginia, Charlottesville, VA;University of Virginia, Charlottesville, VA;University of Virginia, Charlottesville, VA

  • Venue:
  • ACM Transactions on Architecture and Code Optimization (TACO)
  • Year:
  • 2004

Quantified Score

Hi-index 0.00

Visualization

Abstract

With cooling costs rising exponentially, designing cooling solutions for worst-case power dissipation is prohibitively expensive. Chips that can autonomously modify their execution and power-dissipation characteristics permit the use of lower-cost cooling solutions while still guaranteeing safe temperature regulation. Evaluating techniques for this dynamic thermal management (DTM), however, requires a thermal model that is practical for architectural studies.This paper describes HotSpot, an accurate yet fast and practical model based on an equivalent circuit of thermal resistances and capacitances that correspond to microarchitecture blocks and essential aspects of the thermal package. Validation was performed using finite-element simulation. The paper also introduces several effective methods for DTM: "temperature-tracking" frequency scaling, "migrating computation" to spare hardware units, and a "hybrid" policy that combines fetch gating with dynamic voltage scaling. The latter two achieve their performance advantage by exploiting instruction-level parallelism, showing the importance of microarchitecture research in helping control the growth of cooling costs.Modeling temperature at the microarchitecture level also shows that power metrics are poor predictors of temperature, that sensor imprecision has a substantial impact on the performance of DTM, and that the inclusion of lateral resistances for thermal diffusion is important for accuracy.