Dynamic instruction schedulers in a 3-dimensional integration technology

  • Authors:
  • Kiran Puttaswamy;Gabriel H. Loh

  • Affiliations:
  • Georgia Institute of Technology, Atlanta, GA;Georgia Institute of Technology, Atlanta, GA

  • Venue:
  • GLSVLSI '06 Proceedings of the 16th ACM Great Lakes symposium on VLSI
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

We present the design of high-performance and energy-efficient dynamic instruction schedulers in a 3-Dimensional integration technology. Based on a previous observation that the critical path latency of a conventional dynamic scheduler is greatly affected by wire delay, we propose 3D-integrated scheduler designs by partitioning a conventional scheduler across multiple vertically-stacked die. The die-stacked organization reduces the lengths of critical wires thus reducing both latency and energy. Our simulation results show that a 20-entry (120-entry) instruction scheduler implemented in a 2-die stack achieves a 9% (19%) reduction in latency with simultaneous energy reduction as compared to a conventional planar design. The benefits are even larger when the instruction scheduler is implemented on a 4-die stack, with the corresponding latency reductions being 12% (32%).