A Novel Delay Fault Testing Methodology Using Low-Overhead Built-In Delay Sensor

  • Authors:
  • Swaroop Ghosh;Swarup Bhunia;Arijit Raychowdhury;Kaushik Roy

  • Affiliations:
  • Sch. of Electr. & Comput. Eng., Purdue Univ., West Lafayette, IN;-;-;-

  • Venue:
  • IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
  • Year:
  • 2006

Quantified Score

Hi-index 0.03

Visualization

Abstract

A novel integrated approach for delay-fault testing in external (automatic-test-equipment-based) and test-per-scan built-in self-test (BIST) using on-die delay sensing and test point insertion is proposed. A robust, low-overhead, and process-tolerant on-chip delay-sensing circuit is designed for this purpose. An algorithm is also developed to judiciously insert delay-sensor circuits at the internal nodes of logic blocks for improving delay-fault coverage with little or no impact on the critical-path delay. The proposed delay-fault testing approach is verified for transition- and segment-delay-fault models. Experimental results for external testing (BIST) show up to 31% (30%) improvement in fault coverage and up to 67.5% (85.5%) reduction in test length for transition faults. An increase in the number of robustly detectable critical-path segments of up to 54% and a reduction in test length for the segment-delay-fault model of up to 76% were also observed. The delay and area overhead due to insertion of the delay-sensing hardware have been limited to 2% and 4%, respectively