Minimizing area and power of sequential CMOS circuits using threshold decomposition

  • Authors:
  • Niranjan Kulkarni;Nishant Nukala;Sarma Vrudhula

  • Affiliations:
  • Arizona State University, Tempe, AZ;Arizona State University, Tempe, AZ;Arizona State University, Tempe, AZ

  • Venue:
  • Proceedings of the International Conference on Computer-Aided Design
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper describes the design of a standard cell library of differential mode threshold gates, referred to as a Threshold Logic Latch or TLL, and new threshold function identification and decomposition methods to map a conventional logic network consisting of logic gates and flipflops, into a hybrid network that consists of both TLLs and conventional logic gates. After logic synthesis and physical design (placement and routing) using a commercial 65nm LP (low power) library, and commercial design tools, the hybrid circuits are shown to have up to 35% less dynamic power, about 50% less leakage power and around 37% less area when compared to the corresponding conventional design operated at the same (peak) frequency.