Robust and efficient pose estimation from line correspondences

  • Authors:
  • Lilian Zhang;Chi Xu;Kok-Meng Lee;Reinhard Koch

  • Affiliations:
  • Institute of Computer Science, University of Kiel, Germany;Bioinformatics Institute, A*STAR, Singapore;School of Mechanical Engineering, Georgia Institute of Technology;Institute of Computer Science, University of Kiel, Germany

  • Venue:
  • ACCV'12 Proceedings of the 11th Asian conference on Computer Vision - Volume Part III
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

We propose a non-iterative solution for the Perspective-n-Line (PnL) problem, which can efficiently and accurately estimate the camera pose for both small number and large number of line correspondences. By selecting a rotation axis in the camera framework, the reference lines are divided into triplets to form a sixteenth order cost function, and then the optimum is retrieved from the roots of the derivative of the cost function by evaluating the orthogonal errors and the reprojected errors of the local minima. The final pose estimation is normalized by a 3D alignment approach. The advantages of the proposed method are as follows: (1) it stably retrieves the optimum of the solution with very little computational complexity and high accuracy; (2) small line sets can be robustly handled to achieve highly accurate results and; (3) large line sets can be efficiently handled because it is O(n).