A Cost-efficient Input Vector Monitoring Concurrent On-line BIST Scheme Based on Multilevel Decoding Logic

  • Authors:
  • Tie-Bin Wu;Heng-Zhu Liu;Peng-Xia Liu;Dong-Sheng Guo;Hai-Ming Sun

  • Affiliations:
  • School of Computer Science, National University of Defense Technology, Changsha, China;School of Computer Science, National University of Defense Technology, Changsha, China;School of Computer Science, National University of Defense Technology, Changsha, China;School of Computer Science, National University of Defense Technology, Changsha, China;School of Computer Science, National University of Defense Technology, Changsha, China

  • Venue:
  • Journal of Electronic Testing: Theory and Applications
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

Input vector monitoring concurrent on-line BIST based on multilevel decoding logic is an attractive approach to reduce hardware overhead. In this paper, a novel optimization scheme is proposed for further reducing the hardware overhead of the decoding structure, which refers to improved decoding, input reduction, and simulated annealing inputs swapping approaches. Furthermore, utilizing similar multilevel decoding logic as the responses verifier, a novel cost-efficient input vector monitoring concurrent on-line BIST scheme is presented. The proposed scheme is applicable to the concurrent on-line testing for the CUT, the detail of which can not be obtained, such as hard IP cores. Experimental results indicate that the proposed optimization approaches can significantly reduce the hardware overhead of the decoding structure, and the proposed scheme costs lower hardware than other existing schemes.