Low-power realization of FIR filters on programmable DSP's

  • Authors:
  • Mahesh Mehendale;Sunil D. Sherlekar;G. Venkatesh

  • Affiliations:
  • Texas Instruments, Bangalore, India;Silicon Automation Systems, Bangalore, India;Silicon Automation Systems, Bangalore, India

  • Venue:
  • IEEE Transactions on Very Large Scale Integration (VLSI) Systems
  • Year:
  • 1998

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper addresses the problem of reducing power dissipation of finite impulse response (FIR) filters implemented on programmable digital signal processors (DSPs). We describe a generic DSP architecture and identify the main sources of power dissipation during FIR filtering. We present seven transformations to reduce power dissipated in one or more of these sources. These transformations complement each other and together operate at algorithmic, architectural, logic and layout levels of design abstraction. Each of the transformations is discussed in detail and the results are presented to highlight its effectiveness. We show that the power dissipation can be reduced by more than 40% using these transforms. The transformations have been encapsulated in a framework that provides a comprehensive solution to low-power realization of FIR filters on programmable DSP's.