Multidestination Message Passing in Wormhole k-ary n-cube Networks with Base Routing Conformed Paths

  • Authors:
  • Dhabaleswar K. Panda;Sanjay Singal;Ram Kesavan

  • Affiliations:
  • The Ohio State Univ., Columbus;Silicon Graphics Inc., Mountain View, CA;Tandem Inc., Cupertino, CA

  • Venue:
  • IEEE Transactions on Parallel and Distributed Systems
  • Year:
  • 1999

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper proposes multidestination message passing on wormhole k-ary n-cube networks using a new base-routing-conformed-path (BRCP) model. This model allows both unicast (single-destination) and multidestination messages to co-exist in a given network without leading to deadlock. The model is illustrated with several common routing schemes (deterministic, as well as adaptive), and the associated deadlock-freedom properties are analyzed. Using this model, a set of new algorithms for popular collective communication operations, broadcast and multicast, are proposed and evaluated. It is shown that the proposed algorithms can considerably reduce the latency of these operations compared to the Umesh (unicast-based multicast) [1] and the Hamiltonian path-based [2] schemes. A very interesting result that is presented shows that a multicast can be implemented with reduced or near-constant latency as the number of processors participating in the multicast increases beyond a certain number. It is also shown that the BRCP model can take advantage of adaptivity in routing schemes to further reduce the latency of these operations. The multidestination mechanism and the BRCP model establish a new foundation to provide fast and scalable collective communication support on wormhole-routed systems.