Efficient performance prediction for modern microprocessors

  • Authors:
  • David Ofelt;John L. Hennessy

  • Affiliations:
  • Juniper Networks, 380 Bernardo Avenue, Mountain View, CA;Stanford University, 450 Serra Mall, Building 10, Stanford, CA

  • Venue:
  • Proceedings of the 2000 ACM SIGMETRICS international conference on Measurement and modeling of computer systems
  • Year:
  • 2000

Quantified Score

Hi-index 0.00

Visualization

Abstract

Generating an accurate estimate of the performance of a program on a given system is important to a large number of people. Computer architects, compiler writers, and developers all need insight into a machine's performance. There are a number of performance estimation techniques in use, from profile-based approaches to full machine simulation. This paper discusses a profile-based performance estimation technique that uses a lightweight instrumentation phase that runs in order number of dynamic instructions, followed by an analysis phase that runs in roughly order number of static instructions. This technique accurately predicts the performance of the core pipeline of a detailed out-of-order issue processor model while scheduling far fewer instructions than does full simulation. The difference between the predicted execution time and the time obtained from full simulation is only a few percent.