Run-time modeling and estimation of operating system power consumption

  • Authors:
  • Tao Li;Lizy Kurian John

  • Affiliations:
  • University of Texas at Austin, Austin, TX;University of Texas at Austin, Austin, TX

  • Venue:
  • SIGMETRICS '03 Proceedings of the 2003 ACM SIGMETRICS international conference on Measurement and modeling of computer systems
  • Year:
  • 2003

Quantified Score

Hi-index 0.00

Visualization

Abstract

The increasing constraints on power consumption in many computing systems point to the need for power modeling and estimation for all components of a system. The Operating System (OS) constitutes a major software component and dissipates a significant portion of total power in many modern application executions. Therefore, modeling OS power is imperative for accurate software power evaluation, as well as power management (e.g. dynamic thermal control and equal energy scheduling) in the light of OS-intensive workloads. This paper characterizes the power behavior of a commercial OS across a wide spectrum of applications to understand OS energy profiles and then proposes various models to cost-effectively estimate its run-time energy dissipation. The proposed models rely on a few simple parameters and have various degrees of complexity and accuracy. Experiments show that compared with cycle-accurate full-system simulation, the model can predict cumulative OS energy to within 1% accuracy for a set of benchmark programs evaluated on a high-end superscalar microprocessor. When applied to track run-time OS energy profiles, the proposed routine level OS power model offers superior accuracy than a simpler, flat OS power model, yielding per-routine estimation error of less than 6%. The most striking observation is the strong correlation between power consumption and the instructions per cycle (IPC) during OS routine executions. Since tools and methodology to measure IPC exist on modern microprocessors, the proposed models can estimate OS power for run-time dynamic thermal and energy management.