Instruction-Level Distributed Processing

  • Authors:
  • James E. Smith

  • Affiliations:
  • -

  • Venue:
  • Computer
  • Year:
  • 2001

Quantified Score

Hi-index 4.10

Visualization

Abstract

For nearly 20 years, microarchitecture research has emphasized instruction-level parallelism (ILP), which improves performance by increasing the number of instructions per cycle. In striving for such parallelism, researchers have exploited advances in chip technology to develop complex, hardware-intensive processors. This trend has resulted in high intellectual complexity in the increasingly intricate schemes for squeezing performance out of second- and third-order effects. To simplify these increasingly complex designs, developers can borrow distributed- systems methods and apply them at the processor level to solve load balance, resource allocation, and communication problems. The current focus on ILP will likely shift to instruction-level distributed processing, emphasizing inter-instruction communication with dynamic optimization and a tight interaction between hardware and low-level software. To help find runtime parallelism, orchestrate distributed hardware resources, and implement power conservation strategies, an additional layer of abstraction-- the virtual machine layer--will likely become an essential ingredient. Finally, new instruction sets may be necessary to better focus on instruction-level communication and dependence, rather than computation and independence as is commonly done today.