The Utility of Global Representations in a Cognitive Map

  • Authors:
  • Margaret E. Jefferies;Wai K. Yeap

  • Affiliations:
  • -;-

  • Venue:
  • COSIT 2001 Proceedings of the International Conference on Spatial Information Theory: Foundations of Geographic Information Science
  • Year:
  • 2001

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper we propose the use of small global memory for a viewer's immediate surroundings to assist in recognising places that have been visited previously. We call this global memory a Memory for the Immediate Surroundings (MFIS). Our previous work [1, 2] on building a cognitive map has focused on computing a representation for the different local spaces the viewer visits. The different local spaces which are computed can be connected together in the way they are experienced to form a topological network which is one aspect of a cognitive map of the spatial environment. The problem with topological representations is that using them one cannot easily detect that one is reentering a previously visited part of the environment if it is approached from a different side to the one used previously. Thus we have developed a cognitive map representation which comprises an MFIS working in cooperation with the topological network. The idea that a global map is present as part of the cognitive mapping process is increasingly appealing. Robotics researchers have used them from the early days of autonomous mobile robots. However, they have shown that it is difficult to compute an accurate global representation because of errors. There is now increasing evidence that a global map is used in animals and many simulation models have incorporated the use of such a map. In this paper we review these works, discuss this notion of a global map in cognitive mapping, and show how one could be computed with minimum effort.