Haptic Volume Interaction with Anatomic Models at Sub-Voxel Resolution

  • Authors:
  • A. Petersik;B. Pflesser;U. Tiede;K. H. Hoehne;R. Leuwer

  • Affiliations:
  • -;-;-;-;-

  • Venue:
  • HAPTICS '02 Proceedings of the 10th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems
  • Year:
  • 2002

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper, a new approach for haptic volume interaction with high resolution voxel-based anatomic models is presented. The haptic rendering is based on a multi-point collision detection approach which provides realistic tool interaction with the models. Both haptics and graphics are rendered at sub-voxel resolution, which leads to a high level of detail and enables the exploration of the models at any scale. Forces are calculated at an update rate of 6000 Hz and sent to a 3-Degree-of-Freedom (3-DOF) force-feedback device. Compared to point-based haptic rendering, the unique approach of the multi-point collision detection in combination with sub-voxel rendering provides more realistic and very detailed haptic sensations. As a main application, a simulator for petrous bone surgery was developed. With a simulated drill, bony structure can be removed and the access path to the middle ear can be studied.