Discrete multiscale vector field decomposition

  • Authors:
  • Yiying Tong;Santiago Lombeyda;Anil N. Hirani;Mathieu Desbrun

  • Affiliations:
  • USC;Caltech;Caltech;USC

  • Venue:
  • ACM SIGGRAPH 2003 Papers
  • Year:
  • 2003

Quantified Score

Hi-index 0.00

Visualization

Abstract

While 2D and 3D vector fields are ubiquitous in computational sciences, their use in graphics is often limited to regular grids, where computations are easily handled through finite-difference methods. In this paper, we propose a set of simple and accurate tools for the analysis of 3D discrete vector fields on arbitrary tetrahedral grids. We introduce a variational, multiscale decomposition of vector fields into three intuitive components: a divergence-free part, a curl-free part, and a harmonic part. We show how our discrete approach matches its well-known smooth analog, called the Helmotz-Hodge decomposition, and that the resulting computational tools have very intuitive geometric interpretation. We demonstrate the versatility of these tools in a series of applications, ranging from data visualization to fluid and deformable object simulation.