A Utilization Bound for Aperiodic Tasks and Priority Driven Scheduling

  • Authors:
  • Tarek F. Abdelzaher;Vivek Sharma;Chenyang Lu

  • Affiliations:
  • -;-;-

  • Venue:
  • IEEE Transactions on Computers
  • Year:
  • 2004

Quantified Score

Hi-index 14.98

Visualization

Abstract

Abstract--Real-time scheduling theory offers constant-time schedulability tests for periodic and sporadic tasks based on utilization bounds. Unfortunately, the periodicity or the minimal interarrival-time assumptions underlying these bounds make them inapplicable to a vast range of aperiodic workloads such as those seen by network routers, Web servers, and event-driven systems. This paper makes several important contributions toward real-time scheduling theory and schedulability analysis. We derive the first known bound for schedulability of aperiodic tasks. The bound is based on a utilization-like metric we call synthetic utilization, which allows implementing constant-time schedulability tests at admission control time. We prove that the synthetic utilization bound for deadline-monotonic scheduling of aperiodic tasks is {\frac 1 {1 + \sqrt {1/2}}}. We also show that no other time-independent scheduling policy can have a higher schedulability bound. Similarly, we show that EDF has a bound of 1 and that no dynamic-priority policy has a higher bound. We assess the performance of the derived bound and conclude that it is very efficient in hit-ratio maximization.