Mechanism design for online real-time scheduling

  • Authors:
  • Ryan Porter

  • Affiliations:
  • Stanford University, Stanford, CA

  • Venue:
  • EC '04 Proceedings of the 5th ACM conference on Electronic commerce
  • Year:
  • 2004

Quantified Score

Hi-index 0.00

Visualization

Abstract

For the problem of online real-time scheduling of jobs on a single processor, previous work presents matching upper and lower bounds on the competitive ratio that can be achieved by a deterministic algorithm. However, these results only apply to the non-strategic setting in which the jobs are released directly to the algorithm. Motivated by emerging areas such as grid computing, we instead consider this problem in an economic setting, in which each job is released to a separate, self-interested agent. The agent can then delay releasing the job to the algorithm, inflate its length, and declare an arbitrary value and deadline for the job, while the center determines not only the schedule, but the payment of each agent. For the resulting mechanism design problem (in which we also slightly strengthen an assumption from the non-strategic setting), we present a mechanism that addresses each incentive issue, while only increasing the competitive ratio by one. We then show a matching lower bound for deterministic mechanisms that never pay the agents.