Online mechanism design for electric vehicle charging

  • Authors:
  • Enrico H. Gerding;Valentin Robu;Sebastian Stein;David C. Parkes;Alex Rogers;Nicholas R. Jennings

  • Affiliations:
  • University of Southampton, Southampton, UK;University of Southampton, Southampton, UK;University of Southampton, Southampton, UK;Harvard University, Cambridge, MA;University of Southampton, Southampton, UK;University of Southampton, Southampton, UK

  • Venue:
  • The 10th International Conference on Autonomous Agents and Multiagent Systems - Volume 2
  • Year:
  • 2011

Quantified Score

Hi-index 0.02

Visualization

Abstract

Plug-in hybrid electric vehicles are expected to place a considerable strain on local electricity distribution networks, requiring charging to be coordinated in order to accommodate capacity constraints. We design a novel online auction protocol for this problem, wherein vehicle owners use agents to bid for power and also state time windows in which a vehicle is available for charging. This is a multi-dimensional mechanism design domain, with owners having non-increasing marginal valuations for each subsequent unit of electricity. In our design, we couple a greedy allocation algorithm with the occasional "burning" of allocated power, leaving it unallocated, in order to adjust an allocation and achieve monotonicity and thus truthfulness. We consider two variations: burning at each time step or on-departure. Both mechanisms are evaluated in depth, using data from a real-world trial of electric vehicles in the UK to simulate system dynamics and valuations. The mechanisms provide higher allocative efficiency than a fixed price system, are almost competitive with a standard scheduling heuristic which assumes non-strategic agents, and can sustain a substantially larger number of vehicles at the same per-owner fuel cost saving than a simple random scheme.