Nanoscale CMOS circuit leakage power reduction by double-gate device

  • Authors:
  • Keunwoo Kim;Koushik K. Das;Rajiv V. Joshi;Ching-Te Chuang

  • Affiliations:
  • IBM T. J. Watson Research Center, Yorktown Heights, NY;IBM T. J. Watson Research Center, Yorktown Heights, NY;IBM T. J. Watson Research Center, Yorktown Heights, NY;IBM T. J. Watson Research Center, Yorktown Heights, NY

  • Venue:
  • Proceedings of the 2004 international symposium on Low power electronics and design
  • Year:
  • 2004

Quantified Score

Hi-index 0.01

Visualization

Abstract

Leakage power for extremely scaled (Leff = 25 nm) double-gate devices is examined. Numerical two-dimensional simulation results for double-gate CMOS device/circuit power are presented from physics principle, identifying that double-gate technology is an ideal candidate for low-power applications. Unique double-gate device features resulting from gate-gate coupling are discussed and effectively exploited for optimal low-leakage device design. Design trade-offs for double-gate CMOS power and performance are suggested for low-power and high-performance applications. Total power consumptions of static and dynamic circuits and latches for double-gate device are analyzed considering state dependency, showing that leakage current is reduced by a factor of over 10X, compared with conventional bulk-Si counterpart.