Part I: A Theory for Deadlock-Free Dynamic Network Reconfiguration

  • Authors:
  • Jose Duato;Olav Lysne;Ruoming Pang;Timothy M. Pinkston

  • Affiliations:
  • IEEE;IEEE;-;IEEE

  • Venue:
  • IEEE Transactions on Parallel and Distributed Systems
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper develops theoretical support useful for determining deadlock properties of dynamic network reconfiguration techniques and also serves as a basis for the development of design methodologies useful for deriving deadlock-free reconfiguration techniques. It is applicable to interconnection networks typically used in multiprocessor servers, network-based computing clusters, and distributed storage systems, and also has potential application to system-on-chip networks. This theory builds on basic principles established by previous theories while pioneering new concepts fundamental to the case of dynamic network reconfiguration.