Balancing Resource Utilization to Mitigate Power Density in Processor Pipelines

  • Authors:
  • Michael D. Powell;Ethan Schuchman;T. N. Vijaykumar

  • Affiliations:
  • Purdue University;Purdue University;Purdue University

  • Venue:
  • Proceedings of the 38th annual IEEE/ACM International Symposium on Microarchitecture
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

Power density is a growing problem in high-performance processors in which small, high-activity resources overheat. Two categories of techniques, temporal and spatial, can address power density in a processor. Temporal solutions slow computation and heating either through frequency and voltage scaling or through stopping computation long enough to allow the processor to cool; both degrade performance. Spatial solutions reduce heat by moving computation from a hot resource to an alternate resource (e.g., a spare ALU) to allow cooling. Spatial solutions are appealing because they have negligible impact on performance, but they require availability of spatial slack in the form of spare or underutilized resource copies. Previous work focusing on spatial slack within a pipeline has proposed adding extra resource copies to the pipeline, which adds substantial complexity because the resources that overheat, issue logic, register files, and ALUs, are the resources in some of the tightest critical paths in the pipeline. Previous work has not considered exploiting the spatial slack already existing within pipeline resource copies. Utilization can be quite asymmetric across resource copies, leaving some copies substantially cooler than others. We observe that asymmetric utilization within copies of three key back-end resources, the issue queue, register files, and ALUs, creates spatial slack opportunities. By balancing asymmetry in their utilization, we can reduce power density. Scheduling policies for these resources were designed for maximum simplicity before power density was a concern; our challenge is to address asymmetric heating while keeping the pipeline simple. Balancing asymmetric utilization reduces the need for other performancedegrading temporal power-density techniques. While our techniques do not obviate temporal techniques in high-resource-utilization applications, we greatly reduce their use, improving overall performance.