Noise-aware buffer planning for interconnect-driven floorplanning

  • Authors:
  • Shu-Min Li;Yih-Huai Cherng;Yao-Wen Chang

  • Affiliations:
  • National Chiao Tung University, Hsinchu, Taiwan;Synopsys Inc., Taipei, Taiwan;National Taiwan University, Taipei, Taiwan

  • Venue:
  • ASP-DAC '03 Proceedings of the 2003 Asia and South Pacific Design Automation Conference
  • Year:
  • 2003

Quantified Score

Hi-index 0.00

Visualization

Abstract

Crosstalk-induced noise has become a key problem in interconnect optimization when technology improves, spacing diminishes, and coupling capacitance/inductance increases. Buffer insertion/sizing is one of the most effective and popular techniques to reduce interconnect delay and decouple coupling effects. It is traditionally applied to post-layout optimization. However it is obviously infeasible to insert/size hundreds of thousands buffers during the post-layout stage when most routing regions are occupied. Therefore, it is desirable to incorporate buffer planning into floorplanning to ensure timing closure and design convergence. In this paper we first derive formulae of buffer insertion for timing and noise optimization, and then apply the formulae to compute the feasible regions for inserting buffers to meet both timing and noise constraints. Experimental results show that our approach achieves an average success rate of 80.9% (78.2%) of nets meeting timing constraints alone (both timing and noise constraints) and consumes an average extra area of only 0.49% (0.66%) over the given floorplan, compared with the average success rate of 75.6% of nets meeting timing constraints alone and an extra area of 1.33% by the BBP method [3].