Energy-efficient FPGA interconnect design

  • Authors:
  • Maurice Meijer;Rohini Krishnan;Martijn Bennebroek

  • Affiliations:
  • Philips Research Laboratories, Eindhoven, The Netherlands;Philips Research Laboratories, Eindhoven, The Netherlands;Philips Research Laboratories, Eindhoven, The Netherlands

  • Venue:
  • Proceedings of the conference on Design, automation and test in Europe: Designers' forum
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

Despite recent advances in FPGA devices and embedded cores, their deployment in commercial products remains rather limited due to practical constraints on, for example, cost, size, performance, and/or energy consumption. In this paper, we address the latter bottleneck and propose a novel FPGA interconnect architecture that reduces energy consumption without sacrificing performance and size. It is demonstrated that the delay of a full-swing, fully-buffered interconnect architecture can be matched by a low-swing solution that dissipates significantly less power and contains a mix of buffer and pass-gate switches. The actual energy savings depend on the specifics of the interconnect design and applications involved. For the considered fine-grain FPGA example, energy savings are observed to range from a factor 4.7 for low-load critical nets to a factor 2.8 for high-load critical nets. The results are obtained from circuit simulations in a 0.13 μm CMOS technology for various benchmarks.