Evaluation of low-leakage design techniques for field programmable gate arrays

  • Authors:
  • Arifur Rahman;Vijay Polavarapuv

  • Affiliations:
  • Polytechnic University, Brooklyn, NY;Polytechnic University, Brooklyn, NY

  • Venue:
  • FPGA '04 Proceedings of the 2004 ACM/SIGDA 12th international symposium on Field programmable gate arrays
  • Year:
  • 2004

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper we evaluate the trade-offs between various low-leakage design techniques for field programmable gate arrays (FGPAs) in deep sub-micron technologies. Since multiplexers are widely used in FPGAs for implementing look up tables (LUTs) and connection and routing switches, several low-leakage implementations of pass transistor based multiplexers and routing switches are proposed and their design trade-offs are presented based on transistor-level simulation, physical design, and impact on overall system performance. We find that gate biasing, the use of redundant SRAM cells, and integration of multi-Vt technology are ideal for FPGAs, and they can reduce leakage current by 2X-4X compared to an implementation without any leakage reduction technique. For some of the potential low-leakage design techniques being evaluated in our study, the impact on chip area is very minimal to an increase of 15%-30%.