Flow simulation with locally-refined LBM

  • Authors:
  • Ye Zhao;Feng Qiu;Zhe Fan;Arie Kaufman

  • Affiliations:
  • Kent State University;Stony Brook University;Stony Brook University;Stony Brook University

  • Venue:
  • Proceedings of the 2007 symposium on Interactive 3D graphics and games
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

We simulate 3D fluid flow by a locally-refined lattice Boltzmann method (LBM) on graphics hardware. A low resolution LBM simulation running on a coarse grid models global flow behavior of the entire domain with low consumption of computational resources. For regions of interest where small visual details are desired, LBM simulations are performed on fine grids, which are separate grids superposed on the coarse one. The flow properties on boundaries of the fine grids are determined by the global simulation on the coarse grid. Thus, the locally refined fine-grid simulations follow the global fluid behavior, and model the desired small-scale and turbulent flow motion with their denser numerical discretization. A fine grid can be initiated and terminated at any time while the global simulation is running. It can also move inside the domain with a moving object to capture small-scale vortices caused by the object. Besides the performance improvement due to the adaptive simulation, the locally-refined LBM is suitable for acceleration on contemporary graphics hardware (GPU), since it involves only local and linear computations. Therefore, our approach achieves fast and adaptive 3D flow simulation for computer games and other interactive applications.