Automated design of application specific superscalar processors: an analytical approach

  • Authors:
  • Tejas S. Karkhanis;James E. Smith

  • Affiliations:
  • University of Wisconsin - Madison, Madison, WI;University of Wisconsin - Madison, Madison, WI

  • Venue:
  • Proceedings of the 34th annual international symposium on Computer architecture
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

Analytical modeling is applied to the automated design of application-specific superscalar processors. Using an analytical method bridges the gap between the size of the design space and the time required for detailed cycle-accurate simulations. The proposed design framework takes as inputs the design targets (upper bounds on execution time, area, and energy), design alternatives, and one or more application programs. The output is the set of out-of-order superscalar processors that are Pareto-optimal with respect to performance-energy-area. The core of the new design framework is made up of analytical performance and energy activity models, and an analytical model-based design optimization process. For a set of benchmark programs and a design space of 2000 designs, the design framework arrives at all performance-energy-area Pareto-optimal design points within 16 minutes on a 2 GHz Pentium-4. In contrast, it is estimated that a naíve cycle-accurate simulation-based exhaustive search would require at least two months to arrive at the Pareto-optimal design points for the same design space.