Rapid and accurate latch characterization via direct Newton solution of setup/hold times

  • Authors:
  • Shweta Srivastava;Jaijeet Roychowdhury

  • Affiliations:
  • University of Minnesota;University of Minnesota

  • Venue:
  • Proceedings of the conference on Design, automation and test in Europe
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

Characterizing setup/hold times of latches and registers, a crucial component for achieving timing closure of large digital designs, typically occupies months of computation in industries such as Intel and IBM. We present a novel approach to speed up latch characterization by formulating the setup/hold time problem as a scalar nonlinear equation h(τ) = 0 derived using state-transition functions, and then solving this equation by Newton-Raphson (NR). The local quadratic convergence of NR results in rapid improvements in accuracy at every iteration, thereby significantly reducing the computation needed for accurate determination of setup/hold times. We validate the fast convergence and computational advantage of the new method on transmission gate and C2MOS latch/register structures, obtaining speedups of 4-10 × over the current standard of binary search.