A high-performance droplet router for digital microfluidic biochips

  • Authors:
  • Minsik Cho;David Z. Pan

  • Affiliations:
  • University of Texas at Austin, Austin, TX, USA;University of Texas at Austin, Austin, TX, USA

  • Venue:
  • Proceedings of the 2008 international symposium on Physical design
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper, we propose a high-performance droplet router for digital microfluidic biochip (DMFB) design. Due to recent advancements in bio-MEMS, the design complexity and the scale of a DMFB are expected to explode in near future, thus requiring strong support from CAD as in conventional VLSI design. Among multiple design stages of a DMFB, droplet routing which schedules the movement of each droplet in a time-multiplexed manner is a critical challenge due to high complexity as well as large impacts on performance. Our algorithm first routes a droplet with higher bypassibility which less likely blocks the movement of the others. When multiple droplets form a deadlock, our algorithm resolves it by backing off some droplets for concession. A final compaction step further enhances timing as well as fault-tolerance by tuning each droplet movement greedily. Experimental results on hard benchmarks show that our algorithm achieves over 35x and 20x better routability with comparable timing and fault-tolerance than the popular prioritized A* search [2] and the state-of-the-art network-flow based algorithm [18], respectively