Statistical diagnosis of unmodeled systematic timing effects

  • Authors:
  • Pouria Bastani;Nicholas Callegari;Li-C. Wang;Magdy S. Abadir

  • Affiliations:
  • University of California - Santa Barbara;University of California - Santa Barbara;University of California - Santa Barbara;Freescale Semiconductor

  • Venue:
  • Proceedings of the 45th annual Design Automation Conference
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

Explaining the mismatch between predicted timing behavior from modeling and simulation, and the observed timing behavior measured on silicon chips can be very challenging. Given a list of potential sources, the mismatch can be the aggregate result caused by some of them both individually and collectively, resulting in a very large search space. Furthermore, observed data are always corrupted by some unknown statistical random noises. To overcome both challenges, this paper proposes a statistical diagnosis framework that formulates the diagnosis problem as a regression learning problem. In this diagnosis framework, the objective is to rank a set of features corresponding to the list of potential sources of concern. The rank is based on measured silicon path delay data such that a feature inducing a larger unexpected timing deviation is ranked higher. Experimental results are presented to explain the learning method. Diagnosis effectiveness will be demonstrated through benchmark experiments and on an industrial design.