Transition-aware decoupling-capacitor allocation in power noise reduction

  • Authors:
  • Po-Yuan Chen;Che-Yu Liu;TingTing Hwang

  • Affiliations:
  • National Tsing Hua University, Hsinchu, Taiwan;National Tsing Hua University, Hsinchu, Taiwan;National Tsing Hua University, Hsinchu, Taiwan

  • Venue:
  • Proceedings of the 2008 IEEE/ACM International Conference on Computer-Aided Design
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

Dynamic power noises may not only degrade the circuit performance but also reduce the noise margin which may result in the functional errors in integrated circuit. Decoupling capacitor (decap) allocation is one of the most effective way in reducing serious dynamic power noises (hotspots). To allocate decap before placement, we observed that not only locations but also rising time of functional cells are required to accurately predict power noises. Compared to a previous work which only takes neighborhood relation into consideration, our method is more efficient in reducing hotspots. Furthermore, to reduce the hotspots after placement, instead of only using the empty space as proposed in the previous work, we move out cells in the area with serious power noise area (hot area). The obtained empty space can be used to accommodate decaps to further reduce the hotspots. The experimental result shows, compared to the previous work [1], our estimation function to allocate decap before placement is 23% better in reducing power noises. Moreover, compared to a method which fills decaps to all remaining empty space, our cell move algorithm can almost eliminate all the remaining hot grid nodes and hot cells. In summary, compared to the original circuits (without decap), about 60% of hotspots can be removed using our prediction function before placement, and most of the remaining hotspots are removed by our cell moving step after placement.