Provably good and practically efficient algorithms for CMP dummy fill

  • Authors:
  • Chunyang Feng;Hai Zhou;Changhao Yan;Jun Tao;Xuan Zeng

  • Affiliations:
  • Fudan University, China;Fudan University, China and Northwestern University;Fudan University, China;Fudan University, China;Fudan University, China

  • Venue:
  • Proceedings of the 46th Annual Design Automation Conference
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

To reduce chip-scale topography variation in Chemical Mechanical Polishing (CMP) process, dummy fill is widely used to improve the layout density uniformity. Previous researches formulated the dummy fill problem as a standard Linear Program (LP). However, solving the huge linear program formed by real-life designs is very expensive and has become the hurdle in deploying the technology. Even though there exist efficient heuristics, their performance cannot be guaranteed. In this paper, we develop a dummy fill algorithm that is both efficient and with provably good performance. It is based on a fully polynomial time approximation scheme by Fleischer [4] for covering LP problems. Furthermore, based on the approximation algorithm, we also propose a new greedy iterative algorithm to achieve high quality solutions more efficiently than previous Monte-Carlo based heuristic methods. Experimental results demonstrate the effectiveness and efficiency of our algorithms.