Multimodal biometric system using rank-level fusion approach

  • Authors:
  • Md. Maruf Monwar;Marina L. Gavrilova

  • Affiliations:
  • Department of Computer Science, University of Calgary, Calgary, AB, Canada;Department of Computer Science, University of Calgary, Calgary, AB, Canada

  • Venue:
  • IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics - Special issue on cybernetics and cognitive informatics
  • Year:
  • 2009

Quantified Score

Hi-index 0.01

Visualization

Abstract

In many real-world applications, unimodal biometric systems often face significant limitations due to sensitivity to noise, intraclass variability, data quality, nonuniversality, and other factors. Attempting to improve the performance of individual matchers in such situations may not prove to be highly effective. Multibiometric systems seek to alleviate some of these problems by providing multiple pieces of evidence of the same identity. These systems help achieve an increase in performance that may not be possible using a single-biometric indicator. This paper presents an effective fusion scheme that combines information presented by multiple domain experts based on the rank-level fusion integration method. The developed multimodal biometric system possesses a number of unique qualities, starting from utilizing principal component analysis and Fisher's linear discriminant methods for individual matchers (face, ear, and signature) identity authentication and utilizing the novel rank-level fusion method in order to consolidate the results obtained from different biometric matchers. The ranks of individual matchers are combined using the highest rank, Borda count, and logistic regression approaches. The results indicate that fusion of individual modalities can improve the overall performance of the biometric system, even in the presence of low quality data. Insights on multibiometric design using rank-level fusion and its performance on a variety of biometric databases are discussed in the concluding section.