A parallel preconditioning strategy for efficient transistor-level circuit simulation

  • Authors:
  • Heidi K. Thornquist;Eric R. Keiter;Robert J. Hoekstra;David M. Day;Erik G. Boman

  • Affiliations:
  • Sandia National Laboratories, Albuquerque, NM;Sandia National Laboratories, Albuquerque, NM;Sandia National Laboratories, Albuquerque, NM;Sandia National Laboratories, Albuquerque, NM;Sandia National Laboratories, Albuquerque, NM

  • Venue:
  • Proceedings of the 2009 International Conference on Computer-Aided Design
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

We describe a parallel computing approach for large-scale SPICE-accurate circuit simulation, which is based on a new strategy for the parallel preconditioned iterative solution of circuit matrices. This strategy consists of several steps, including singleton removal, block triangular form (BTF) reordering, hypergraph partitioning, and a block Jacobi pre-conditioner. Our parallel implementation makes use of a mixed load balance, employing a different parallel partition for the matrix load and solve. Based on message-passing, our circuit simulation code was originally designed for large parallel computers, but for the purposes of this paper we demonstrate that it also gives good parallel speedup in modern multi-core environments. We show that our new parallel solver outperforms a serial direct solver, a parallel direct solver and an alternative iterative solver on a set of circuit test problems.