Fast parallel construction of smooth surfaces from meshes with tri/quad/pent facets

  • Authors:
  • A. Myles;T. Ni;J. Peters

  • Affiliations:
  • University of Florida;University of Florida;University of Florida

  • Venue:
  • SGP '08 Proceedings of the Symposium on Geometry Processing
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

Polyhedral meshes consisting of triangles, quads, and pentagons and polar configurations cover all major sampling and modeling scenarios. We give an algorithm for efficient local, parallel conversion of such meshes to an everywhere smooth surface consisting of low-degree polynomial pieces. Quadrilateral facets with 4-valent vertices are 'regular' and are mapped to bi-cubic patches so that adjacent bi-cubics join C2 as for cubic tensor-product splines. The algorithm can be implemented in the vertex and geometry shaders of the GPU pipeline and does not use the fragment shader. Its implementation in DirectX 10 achieves conversion plus rendering at 659 frames per second with 42.5 million triangles per second on input of a model of 1300 facets of which 60% are not regular.