Automatic merge-point detection for sequential equivalence checking of system-level and RTL descriptions

  • Authors:
  • Bijan Alizadeh;Masahiro Fujita

  • Affiliations:
  • VLSI Design and Education Center, University of Tokyo, Japan;VLSI Design and Education Center, University of Tokyo, Japan

  • Venue:
  • ATVA'07 Proceedings of the 5th international conference on Automated technology for verification and analysis
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper, we propose a novel approach to verify equivalence of C-based system level description versus Register Transfer Level (RTL) model by looking for merge points as early as possible to reduce the size of equivalence checking problems. We tackle exponential path enumeration problem by identifying merge points as well as equivalent nodes automatically. It will describe a hybrid bit- and word-level representation called Linear Taylor Expansion Diagram (LTED) [1] which can be used to check the equivalence of two descriptions in different levels of abstractions. This representation not only has a compact and canonical form, but also is close to high-level descriptions so that it can be utilized as a formal model for many EDA applications such as synthesis. It will then show how this leads to more effective use of LTED to verify equivalence of two descriptions in different levels of abstractions. We use LTED package to successfully verify some industrial circuits. In order to show that our approach is applicable to industrial designs, we apply it to 64- point Fast Fourier Transform and Viterbi algorithms that are the most computationally intensive parts of a communication system.