Recovery-driven design: a power minimization methodology for error-tolerant processor modules

  • Authors:
  • Andrew B. Kahng;Seokhyeong Kang;Rakesh Kumar;John Sartori

  • Affiliations:
  • University of California at San Diego;University of California at San Diego;University of Illinois;University of Illinois

  • Venue:
  • Proceedings of the 47th Design Automation Conference
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

Conventional CAD methodologies optimize a processor module for correct operation, and prohibit timing violations during nominal operation. In this paper, we propose recovery-driven design, a design approach that optimizes a processor module for a target timing error rate instead of correct operation. We show that significant power benefits are possible from a recovery-driven design flow that deliberately allows errors caused by voltage overscaling ([10],[3]) to occur during nominal operation, while relying on an error recovery technique to tolerate these errors. We present a detailed evaluation and analysis of such a CAD methodology that minimizes the power of a processor module for a target error rate. We demonstrate power benefits of up to 25%, 19%, 22%, 24%, 20%, 28%, and 20% versus traditional P&R at error rates of 0.125%, 0.25%, 0.5%, 1%, 2%, 4%, and 8%, respectively. Coupling recovery-driven design with an error recovery technique enables increased efficiency and additional power savings.