Slack redistribution for graceful degradation under voltage overscaling

  • Authors:
  • Andrew B. Kahng;Seokhyeong Kang;Rakesh Kumar;John Sartori

  • Affiliations:
  • ECE and University of California at San Diego;ECE and University of California at San Diego;University of Illinois;University of Illinois

  • Venue:
  • Proceedings of the 2010 Asia and South Pacific Design Automation Conference
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

Modern digital IC designs have a critical operating point, or "wall of slack", that limits voltage scaling. Even with an error-tolerance mechanism, scaling voltage below a critical voltage - so-called overscaling - results in more timing errors than can be effectively detected or corrected. This limits the effectiveness of voltage scaling in trading off system reliability and power. We propose a designlevel approach to trading off reliability and voltage (power) in, e.g., microprocessor designs. We increase the range of voltage values at which the (timing) error rate is acceptable; we achieve this through techniques for power-aware slack redistribution that shift the timing slack of frequently-exercised, near-critical timing paths in a power- and area-efficient manner. The resulting designs heuristically minimize the voltage at which the maximum allowable error rate is encountered, thus minimizing power consumption for a prescribed maximum error rate and allowing the design to fail more gracefully. Compared with baseline designs, we achieve a maximum of 32.8% and an average of 12.5% power reduction at an error rate of 2%. The area overhead of our techniques, as evaluated through physical implementation (synthesis, placement and routing), is no more than 2.7%.