Duet: an accurate leakage estimation and optimization tool for dual-Vt circuits

  • Authors:
  • Supamas Sirichotiyakul;Tim Edwards;Chanhee Oh;Rajendran Panda;David Blaauw

  • Affiliations:
  • Sun Microsystems, Moston, MA;Motorola Incorporated, Austin, TX;Motorola Incorporated, Austin, TX;Motorola Incorporated, Austin, TX;Univ. of Michigan, Ann Arbor

  • Venue:
  • IEEE Transactions on Very Large Scale Integration (VLSI) Systems
  • Year:
  • 2002

Quantified Score

Hi-index 0.00

Visualization

Abstract

We present a new approach for the estimation and optimization of standby power dissipation in large MOS digital circuits. We first introduce a new approach for accurate and efficient calculation of the average standby or leakage current in large digital circuits by introducing the concepts of "dominant leakage states" and the use of state probabilities. Combined with graph reduction techniques and simplified nonlinear simulation, our method achieves speedups of three to four orders of magnitude over exhaustive SPICE simulations while maintaining very good accuracy. The leakage current calculation is then utilized in a new leakage and performance optimization algorithm for circuits using dual Vt processes. Our approach is the first to consider the assignment of both the Vt and the width of a transitor, simultaneously. Our optimization approach was able to obtain 81-100% of the performance achievable with all low Vt transistors, but with 1/3 to 1/6 the standby current. We also show that knowledge of the standby state of the device enhances the leakage/performance tradeoff.