On-die power grids: the missing link

  • Authors:
  • Eli Chiprout

  • Affiliations:
  • Intel Strategic CAD Labs, Hillsboro, OR

  • Venue:
  • Proceedings of the 47th Design Automation Conference
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

Power grids with die-scale dimensions operate in a transient manner that is difficult to predict compared to larger power grids. Given a single excitation and a detailed model one can come to understand the dynamic effects occurring inside the die in terms of localized voltage droop scenarios. However, a major portion of understanding on-die power grids has to do with modeling the current stimulus pre-silicon for design purposes as well as generating a set of activities (via instructions) post-silicon in order to excite the worst case voltage droop. Any chip, especially a microprocessor, contains so many potential state transitions that it is not possible to simulate or enumerate all of them. A spectral-based learning and optimization method can alleviate this problem pre-silicon, while a micro-architectural based test generation scheme can help alleviate the problem post silicon.